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ON ELASTIC, WORKHARDENING SOLIDS*

S. NEMAT-NASSERt

University of California, San Diego
La Jolla, California

Abstract-A set of integral equations is established for the rate of change of the stress field that corresponds to
a given rate of loading from a given elasto-plastic state in an elastic, workhardening solid. An approximate
method is developed for the solution of these integral equations in three- and two-dimensional elasto-plastic
problems. The results are applied to one-dimensional structures, such as continuous beams, and explicit solutions
are obtained.

1. INTRODUCTION

THE stress and the strain fields at any stage in a quasistatic process of the loading of an
elastic, workhardening solid may be determined by the repeated solution of the following
problem: To find the rates of change of the stress and the strain fields that correspond
to a given rate of loading from a given elasto-plastic state of the solid. In the present paper,
a novel approach is suggested for the formulation and solution of this basic problem.
The stress-rates are regarded as the response of the elastic solid to the rate of loading and
the (as yet unknown) plastic strain-rates. Using the concept of the influence function
(Green's function) the stress-rates are then expressed in terms of the rate of loading by
means of a set of integral equations.

Such an integral equation formulation, while of obvious theoretical interest, does not
lend itself to an easy numerical calculation, since the exact Green's function is, in general,
very difficult to obtain. To remedy this, approximate methods for the solution of three­
and two-dimensional elasto-plastic problems are developed. Based on the Ritz method,
a system of integral equations with degenerate kernels is established. These equations can
approximate the basic problem to any desired degree of accuracy. Finally, the method is
applied to one-dimensional elasto-plastic structures, such as continuous beams, yielding
an exact solution for the rate of bending moments.

2. STATEMENT OF PROBLEM AND BASIC EQUATIONS

Consider a solid that consists of an elastic, workhardening material and occupies a
volume V with a regular surface S. Assume that the surface tractions 1; are prescribed on
the part ST of the surface S, and the surface displacements Uj == 0 are defined on the re­
mainder Su of S in such a manner that the response of the solid to arbitrarily given body
forces Fj or surface tractions 1; entails no rigid-body motion.t Let the solid be in the stress-

* The results presented in this paper were obtained in the course of research sponsored under Contract
No. NOOOI4-76-A-Ol09-0003, Task NR 064-496 by the Office of Naval Research, Washington, D.C.

t Department of the Aerospace and Mechanical Engineering Sciences.
t All quantities are referred to a fixed rectangular Cartesian coordinate system Xi; i 1,2,3.
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free, virgin state for 7; == 0, Fi == O. Denote by Ui the infinitesimal displacements of the
material points of the solid from the virgin state to the state of stress Tij which is caused by
the surface tractions 7; and the body forces Fi . Assume that the displacement-gradient
GuJ(JXj is so small that it is unnecessary to distinguish between Eulerian and Lagrangian
variables.

Under these conditions and when the response of the solid to surface tractions 7; and
body forces Fi is purely elastic, i.e. entails no plastic deformations, the displacement field
of the solid can be formulated using Green's function (e.g., Pearson [1], Chapter VI).
Let GIPl(x;~) denote the displacement in the i-direction at point X(XI,X2,X3)' due to the
action of a unit load in the fJ-direction at point ~(~I' ~2' ~3)' when the tractions 7; on ST,
and the displacements G}Pl(x;~) for x on Su are identically zero. Green's function G\Pl is
symmetric and satisfies the following field equations:

Cijk,Glf.lj+oiPo(x-;) = 0 in V, (2.1)

CijkIGlf.~nj = 0 on ST, and Glfl = 0 on Su, (2.2)

where Cijk1 = AOij(5kl +2fLOikOjb Roman subscripts following a comma indicate partial
differentiation with respect to the corresponding components of the vector x, Aand fL are
the Lame constants, oij is the Kronecker delta, and o(x -~)denotes the Dirac delta function.
In (2.2), ni is the exterior unit normal to ST'

The purely elastic response of the solid to a given load 7; and Fi may now be formulated
as follows:

Ui(X) = J. GIPl(x; ~) Tp(~) dS + r GIPl(x; ~)Fp@ d V,
ST Jv

(2.3)

(2.4)

where the integrations are to be carried out with respect to ~, x being held constant, and
ek/ = i(Uk,1 +UI,k) is the strain tensor.

Now assume that the solid is at an elasto-plastic state under the action of a known set
of surface tractions 7; on ST and body forces Fi in V. Consider the rate of loading defined
by the rates of the surface traction T; on STand the body force F; in V. Let the corresponding
rate of the plastic strain be denoted by e7j and the rate of elastic strain by eij. We have

(2.5)

The stress-rate Tij must satisfy the equations of equilibrium and the boundary conditions

Tij.j+F; = 0 in V,

(2.6a)

or

(2.6b)

Equations (2.6b) imply that, when the rate of the plastic strain is supposed to be known,
the solution of the incremental elasto-plastic problem can be obtained by solving an



On elastic, workhardening solids 789

elastic problem where, instead ofthe true rates ofloading Ti and Fi, the following fictitious
rates of surface traction Tr and body force Fr are considered:

Tr = Ti+C/jkIG'kinj on ST,

Fr = Fi - CijkIG'ki,j in V.

The rate of the displacement vector ui may, therefore, be written as

u;(x) = r G\P)(x; ~)Tp@ dS + r G~P)(x; ~)Fp(~) d V
JST Jv

+ r C/ljkIG~P)(X; ~)e'ki@nj dSJST

(2.7a)

(2.7b)

The first two terms in the right side ofthis equation would represent the rate ofdisplace­
ment due to the additional loading if the solid were to respond to such loading in a purely
elastic way. We designate this part of u; by up' and with the aid of the divergence theorem
reduce the above equation to the following form:

(2.8a)

where Greek subscripts following a comma indicate partial differentiation with respect to
the corresponding components of the vector ~.

Since G!")(x;~) represents the displacement at point x due to a unit load at point ~

in the (X-direction, the term G!~~(x;~) corresponds to the displacement vector at x due
to various nuclei of strain [2] at point ~. For example, with IX = fJ 1, GI~J(x;~) defines
the displacement field of a "double force without moment" applied along the I-axis at ~,

while with (X = 1, fJ = 2 it denotes the displacement field of a "double force with moment"
applied along the I-direction at point ~. Writing the integrand in equation (2.8a) in an
expanded form, we have

[
OG(l) oG(2) OG(3l]

("l . fl· _ ' / i fl· (,,) fl·

C<ZjIkIG.,p(X,~)ekl(~)- A. -o~~+ O~2 + O~3 Gkk+ 2j.tGi ,pG<ZjI'

The expression inside of the brackets in the right side of this equation corresponds to the
displacement field of a "center of dilatation" applied at point ~. We shall assume that
ei'; = 0 and, therefore, reduce equation (2.8a) to

ui(x) = unx)+2j.tLG\~J(x; ~)G;;P@ d V.

We now differentiate both sides of equation (2.8b) with respect to Xj and obtain

(2.8b)

(2.8c)
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(2.9)

which represents the rate of the displacement-gradient at point x. The stress-rate 'ij may
now be obtained by substituting from (2.8c) into equation (2.5)

'iix) = r~'(x)+2/1Iv CijkIGl~~/(x; ~)e~p@ dV - 2/1e'fJ(x),

h Q. C Q. d ". 0were 'ij = ijk/Uk," an eii = .
The first-term in the right side of equation (2.9) would be the stress-rate if the solid were

to deform elastically only. The term Gl~~,(x; ~), on the other hand, represents the gradient
of the kth component of the displacement vector in the I-direction at x due to a nucleus of
strain associated with the ex, fJ-directions at ;. Thus the term 2/1Cijk,Gl~1/(x;;)represents
the stress tensor at x due to various nuclei of strain applied at point~. We use the notation
L\jPI(x;;) to designate this influence function (Green's function) and note the following
reciprocity relation:

Equation (2.9) now reduces to

'Ij +2/1e'fJ - Iv LIjPI(x; ~)e~@ dV = ,~'(x) (2.10)

which defines the rate of plastic strain e'fj in terms of the elastic properties of the solid and
the rates of the stress tensors 'Ij and '~'. To complete the formulation of the problem a
phenomenological equation which relates the stress-rate 'Ij to the plastic strain-rate e'fj must
now be postulated.

Somewhat similar lines of reasoning to that presented above has been used by Nabarro
[3J to obtain the stress field of certain prescribed dislocations in an infinitely extended
elastic body, and by Mura [4J in treating the problem of the continuous distribution of
moving dislocations. These ideas have also been employed by Lint and Ito [5] in calculating
the latent elastic strain energy due to given plastic strains in polycrystals. In these studies,
however, the plastic strains are a priori given and the stresses are then defined in terms of
these strains. In the present study, on the other hand, both the stress-rate 'Ij and the plastic
strain-rate e;] are unknowns which are to be calculated using (2.10) and the appropriate
constitutive equations.

3. ELASTIC, WORKHARDENING SOLIDS

When the solid consists of an elastic, workhardening material, we may write (e.g.,
Naghdi [6J)

e'!: = {Aijk/Tkl for loading
'J 0 for unloading,

where the fourth order tensor Aijkl may depend on the considered plastic state;

t Further references to the work of Lin and his coworkers are cited in [5].

(3.1)

(3.2)
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The plastic state is generally characterized by the vanishing of a yield function

f = f(r mn , e;;'n, x)

of the components of stress, plastic strain, and a workhardening parameter x. The sign of
fis chosen in such a manner that f < 0 defines elastic states. The law (3.1) may then be
written as follows:

ell: = ~ of of rkl iff = 0 and
I) D Orij orkl

fl' _ 0 'f{f < 0 oreij - 1

f = 0 and

where, for workhardening solids,

of
-"··>0
O 1)-

rij

(3.3)

(3.4)

D = _ ~f of > o.
orij oeij

From (3.1) and (3.3), we thus have

{
~ of of in V"

Aijkl = D orij ork!

o in V',

where V" defines the collection of the elements which are instantaneously yielding, and
V' defines the collection of the remaining elements of solid that are instantaneously un­
loading or continuing to deform elastically.

With the aid of the stress-strain law (3.1), equation (2.5) reduces to

Noting that eii = 0, this equation may be written as

. {rkl(Dikbjl +2j1Aijkl )
Cijk!Uk,1 =

rij

in V"

in V'.
(3.5)

(3.7)

(3.8)

With the aid of the relation (3.5), equation (2.10) becomes

(c5it<>jl + 2J1Aijkl(X»)ril(X) = rZ'(x) +Iv" LljPI(X; ;)Aa/lkA';)rkl@ d V. (3.6)

For a given plastic state, the stress rij and plastic strain e'(j are known functions of
position x. From (3.2), Aijkl is thus defined as a function of x in V"; it is zero in V'. When,
for a given rate ofloading, no unloading takes place, then the nonsingular, 9 by 9 symmetric
matrix (Dikbjl +2j1Aijkl ) may be inverted to yield

{
(Dik!5jl+2j1A ijk1(X»-1 in V"

K·kl(X) =
I) ~ ~ • V'UikUjl In ,

where the superposed-l defines the inverse. In this case, (3.6) may be written as

r;",,(x) = Kmni){x){ rZ'(x) + Iv" LljPl(x; ;)A«Pkl(;)rkl(;) d V} .
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For a given plastic state and plastic strain-rate ei'j, the rates ofdisplacement vector ui and
stress tensor Ti j are uniquely defined by, and may be calculated from equations (2.8b) and
(2.9), respectively. Therefore, it appears reasonable to consider the stress-rate Ti j as the
unknown; it is defined by the integral equation (3.6). In this equation the kernel Llj/i)(x; ~) ==
2f.lCijklGk~11(X; ~), which represents the stress tensor at x due to various nuclei of strain at~,

defines the elastic properties of the solid and may be calculated (at least approximately) for
a given solid with a prescribed geometry. Moreover, T~· may be calculated for a known rate
of loading using the elasticity theory. The quantity A ijk1 depends on the state of stress, the
plastic strain tensor, the position of the considered element, and also on whether an
element undergoes loading or unloading. Formally, equation (3.6) states that, for a given
rate of loading, the solution of the elasto-plastic problem may be obtained by solving a
nonhomogeneous anisotropic, elastic problem; this problem is linear only if no unloading
takes place, in which case equation (3.8) may be used.

The calculation of an exact Green's function Llj/i)(x; ~) for two- and three-dimensional
problems is, in general, very difficult if not impossible. In addition, even if such an exact
Green's function is available, the system of integral equations (3.6) can not be readily
solved unless this Green's function is degenerate, in which case an exact solution may be
obtained. This is the case for some one-dimensional structures, for example continuous
beams and rigid frames (see Section 4). For most other cases, one is forced into using some
approximate procedures for the solution of the system (3.6).

One approach would be to replace the kernels in (3.6) with some approximate, degener­
ate kernels;

N

LljP)(x;~) = I l/J1'J)(x)l/J~1(~)·
n=l

This is always possible if we have available a sequence of functions

(3.9)

i = 1,2,3, (3. lOa)

which are energy orthonormal (i.e. for each m and n we have

Iv Cijk,q>I~J(x)q>k:l)(x) dV = bmn ,

where bmn is the Kronecker delta) and which satisfy all the geometrical and continuity
requirements on the displacement field of the considered solid. In addition, for any N,
the functions (3. lOa) must be linearly independent and form a sequence which is complete
in energy (see Mikhlin [7]) with respect to the class offunctions Vi that satisfy the geometrical
boundary conditions of the problem and possess the required degree of differentiability. t
Now, using equation (2.1), (or equivalently the Ritz method [7J), we obtain

N

G(~ (x' 1') ~ - " m(n)(x)m(n) (I')k./il ,." ~ 1... "t"k,l "t"~,/i'" .
n= 1

t The completeness of the sequence cpl") with respect to energy implies that a function Vi can be approximated by

such thaI the energy difference

N

v~ = L a",cpl"')(x),
m=l

Iv C;j"[vi,jv",- v7,jvt,J d V

becomes arbitrarily small for sufficiently large N.
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The functions in the right-hand side of (3.9) are thus defined by

l/Jljl(x)l/J~@ - 2pCijklq>~~I(x)<p~~~(~); (no sum on n).

793

(3.1Ob)

Substitution from (3.9) into (3.6) now results in the following system of integral equa­
tions:

i,j, k, I, lX, /3, )',' = 1,2,3,

which can be solved directly if no unloading occurs.
To this end, let

B(nl = Iv" l/J~(;)AcrPy,(~)T~~~) dV

and from (3.7) and (3.11) obtain

Tiix) = Kiikl(X{Tri(x) + ntl B(nll/JW(X)}

(3.11)

(3.12)

Multiplying both sides of (3.12) by l/J~~l(x)ApqiJ{x), and integrating the results over V" with
respect to x yield

where

N

I (I5mn - 'IImn)B(nj = 1m;
n= 1

m = 1,2, ... ,N, (3.13)

and

The system of linear equations (3.13) may be solved for 1Jln) which may then be substituted
into (3.11), yielding an approximate expression for Tkl'

Note that AUkl is zero if unloading takes place, or if an element continues to deform only
elastically. The possibility of unloading complicates the analysis to some extent, since
'limn and 1m in (3.13) depend on the plastic region V" which, if unloading occurs, is not
known a priori. In this case one might use an iterative method [8] or other numerical tech­
niques. In any event the question of whether, for a given rate of loading, an element that
has been in a plastic state unloads or not can only be resolved a posteriori; i.e. after the stress­
rate Tij is known.

In the next section, we shall specialize the results of the present section for application
to one-dimensional structures and outline a method for obtaining exact solutions of the
resulting integral equations.
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4. APPLICATION TO CONTINUOUS BEAMS

(4.1a)i = 1,2, ... N,

The system of integral equations (3.6) takes on a specially simple form in the case of
one-dimensional structures, for example continuous beams. The resulting integral equations
have degenerate kernels and can be solved exactly.

Consider a uniform continuous beam with N spans and elastic bending stiffness B.
Denote by Ii the length of the ith member and by M((i) and X((i) the bending moment and
curvature at the section (; of the ith member, respectively. Consider a loading at a given
rate P'({i) from a given elasto-plastic state, and denote the corresponding rates of moments,
elastic curvatures, and plastic curvatures by M"({;), x~({j), and x~({j), respectively..The
equations of equilibrium aret

d 2M"((j)

d(f

or

(4.1 b)

where X'((i) = X~({i)+K~({;) is the curvature-rate, and M'«(i) = Bxi(;) by Hooke's law.
Let G(z;; C> denote the bending moment at section Zj of the ith member of the elastic

structure due to a unit load applied at section (j of its jth member. Using the method of
Section 2 and equation (4.1b), we may write

(4.2)

where primes denote differentiation with respect to the argument (j' The first term in the
right side of (4.2) would be the rate of moment at Zi due to the rate of loading p' if the struc­
ture were to undergo no plastic deformations. We denote this by Miz;). The second term
on the right side of (4.2) can be integrated by parts, and noting that

(4.3)

where

is Green's function defining the elastic bending moment at section Zj of the ith member ofan
equivalent elastic structure with the bending stiffness B caused by a unit relative rotation
in an imagined hinge at section {j of the jth member.

t No sum is implied on repeated indices in this section; the summation symbol 1: will be used to denote this
operation.
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For a structure that consists of an elastic, workhardening material, we have

{
AM' if IMI::::: Y and MM' > 0

x' - (4.4)
p - 0 if IMI < Y or IMI> Y and MM' < 0,

(4.5)i = 1,2, ... , N,

where the scalar A may depend on the considered plastic state, and where Y denotes the
yield-point bending moment [8]. Substitution from (4.4) into (4,3) now yields

Ni'lM'(z;) = Miz;)+ L L(Zi: C)A(OM'(C)d'j;
j= 1 0

which is the counterpart of system (3.6) for one-dimensional structures in pure bending.
In (4.5), Green's functions L(Zi; 'j) are linear functions in both variables Zi and 'j [9].

We may therefore write

(4.6)

where aij, bij, aij' and bij = aij; i,j = 1,2, ... , N, are constants. Equations (4.5) may thus be
written as

N

M'(zi) = Miz;)+ L (ziaij+bij)Cj+(ziaij+bij)Cj,
j= 1

(4.7)

where

(4.8)

We now multiply both sides of (4.7) first by A(Zi) and then by ZiA(Zi) and integrate each of
the resulting equations with respect to Zi over the plastic regions of the ith member to
obtain

N N

L (Dij+hij)Cj+ L hijCj = Ii,
j= 1 j= 1

N N

L kijCj+ L (Dij+kij)Cj = gj,
j= 1 j= 1

(4.9a)

(4.9b)

where

{
I if i=j

o if i-:l'i'

(4.10)

The 2N linear equations (4.9) may now be solved for the 2N constants Cj and Cj;
j = 1,2, ... , N, and the results may then be substituted into (4.7) yielding the exact solution
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of this system of integral equations. Note that in equations (4.10) the integrals are to be
carried out on the plastic zones where the corresponding A(Zi) is non-zero, If for a given
rate of loading no unloading takes place, the values of A(Zi); i = 1,2,.,., N, are known
and the integrations in (4.10) can be performed explicitly, resulting in a complete solution
of the problem. On the other hand, if some elements that are in a plastic state undergo un­
loading, then the coordinates of the leading head of the corresponding new plastic zones
can be taken as unknown parameters. Now, since at the new elastic-plastic interface we
must have M' = 0, these unknown parameters can readily be calculated,

To illustrate some of the general results obtained in this section, let us consider a uni­
form beam that is built in at both ends and has a length 1and an elastic bending stiffness
B. If Z and ( measure distances from the left support, then the Green function is given by

L*(z*;(*) = (6z*-4)-(l2z*-6)(*,

where the dimensionless quantities

(4.11)

1 (z C)L*(z*· C*) = -L -.,:,
, . B l' 1 '

z
z* = -

l'

and (* = (/1 are used.
Let A(z) = t/J be a constant (a bi-linear moment-eurvature relation), and consider an

elasto-plastic state of the beam that corresponds to plastic regions in the intervals
o~ z* ~ t* and 1- t* ~ z* ~ 1. Consider an additional loading that consists of a mono­
tonically increasing, uniformally distributed lateral pressure which is applied at the rate of
dp/dp == p' = 1; thus, a superposed dot will denote differentiation with respect to p. Since
for this additional loading, unloading may occur, we assume that the new plastic regions
are in the intervals 0 ~ z* ~ t and 1- t ~ z* ~ 1, where t is the root ofequation M'(t) = 0
or equals t* depending on whether M(t*)M'(t*) is negative (unloading occurs) or positive
(no unloading occurs).

With Green's function defined by (4,11), (4.5) reduces to

M'(z*) = M~(z*)+Lt/J[(6z*-4) (l2z*-6)(*]M'«(*)d(*

= M~(Z*)-2t/Jf~ M'«(*)d(*,

where M' is the dimensionless moment-rate, and for the considered loading,

M~(z*) = i(z* - Z*2 - t).
Integrating both sides of(4.12) with respect to z* from zero to t we obtain

M '( *) =.!J *_ *2_1)_ t/J(3t
2
-2t

3
-t).

z 2\Z z b 6(1 +2t/Jt)

where t is given by

(4.12)

(4.13a)

{

t* if M(t*)M'(t*) > 0,
t=

3(1-) 3 1
least root of t

3 + 4t/J t/J t
2

- 4t/J t +8t/J = 0

(4.13b)

if M(t*)M'(t*) < 0,
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A6c:TJI8KT-BbIBOllHTCII CHCTeMa HHTerpanbHblX ypaBHeHHlt llnlI CKOpocTH H3MeHeHHlI nonlI HanplillCeHHII,
KOTopalI COOTBeTCTByeT 3a)I.aHHOlt CKOpocTH Harpy3KH H3 3allaHHoro ynpyro-nnaCTH'IecKoro COCTOllHHII
B TBePllOM Tene C ynpo'lHeHHeM. OnpellenlIeTcli npH6nHlICeHHbllt MeTOll peweHHII 3THX HHTerpanbHblX
ypaBHeHHlt llJllI TpeX- H llByx-MepHblX ynpyro-nnacTH'IecKHX 38.118'1. Pe3ynbTaTbI nOHMeHlIlOTCII K
OllHOMepHbIM KOHCTPYKI.\HIIM, TaKHM KaK Hanp. HenpepbIBHbIe 6anKH. OnpellenlIlOTClI peweHHlI B lIBHOM
BHlle.


